Extensions 1→N→G→Q→1 with N=C329SD16 and Q=C2

Direct product G=N×Q with N=C329SD16 and Q=C2
dρLabelID
C2×C329SD16144C2xC3^2:9SD16288,790

Semidirect products G=N:Q with N=C329SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C329SD161C2 = S3×D4.S3φ: C2/C1C2 ⊆ Out C329SD16488-C3^2:9SD16:1C2288,576
C329SD162C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out C329SD16488-C3^2:9SD16:2C2288,577
C329SD163C2 = D129D6φ: C2/C1C2 ⊆ Out C329SD16488-C3^2:9SD16:3C2288,580
C329SD164C2 = D12.22D6φ: C2/C1C2 ⊆ Out C329SD16488-C3^2:9SD16:4C2288,581
C329SD165C2 = C248D6φ: C2/C1C2 ⊆ Out C329SD1672C3^2:9SD16:5C2288,768
C329SD166C2 = C24.26D6φ: C2/C1C2 ⊆ Out C329SD16144C3^2:9SD16:6C2288,769
C329SD167C2 = SD16×C3⋊S3φ: C2/C1C2 ⊆ Out C329SD1672C3^2:9SD16:7C2288,770
C329SD168C2 = C24.32D6φ: C2/C1C2 ⊆ Out C329SD16144C3^2:9SD16:8C2288,772
C329SD169C2 = C62.131D4φ: C2/C1C2 ⊆ Out C329SD1672C3^2:9SD16:9C2288,789
C329SD1610C2 = C62.75D4φ: C2/C1C2 ⊆ Out C329SD16144C3^2:9SD16:10C2288,808
C329SD1611C2 = C62.74D4φ: trivial image144C3^2:9SD16:11C2288,807


׿
×
𝔽